ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve

(https://github.com/ngsxfem/ngsxfem)

Christoph Lehrenfeld
lehrenfeld@math.uni-goettingen.de

(with contributions from F. Heimann, J. Preuß, M. Hochsteger, ...)

NGSolve user meeting, Vienna, June 15, 2017

Institute for Numerical and Applied Mathematics, University of Göttingen
Table of contents

Example problems
Requirements for geometrically unfitted FEM
Numerical integration on cut elements
Jupyter demo
Conclusion & Outlook
Geometry description via level sets

Level set function ϕ

\[
\phi(x, t) = \begin{cases}
 0, & x \in \Gamma(t), \\
 < 0, & x \in \Omega_1(t), \\
 > 0, & x \in \Omega_2(t).
\end{cases}
\]

Problems:
- PDEs on interior domain Ω_1
- Interface problems involving Ω_1, Ω_2 and Γ
- PDEs on the interface Γ

Properties
- Description only \textit{implicit}
- Geometry evolution with \textbf{PDE for ϕ}
- Meshes are \textit{unfitted}
Example problem 1: Stationary fictitious domain problem

Stationary geometrically unfitted domain ($\Gamma(t) = \Gamma$):

\[-\alpha \Delta u = f \quad \text{in} \quad \Omega = \{\phi < 0\},\]
\[-\alpha \nabla u \cdot n = g_N \quad \text{on} \quad \Gamma_N \subset \{\phi = 0\},\]
\[u = g_D \quad \text{on} \quad \Gamma_D \subset \{\phi = 0\}.\]

Features:

- "CutFEM": Finite element space $V_h^\Gamma = V_h|_\Omega$
- Imposition of Dirichlet values
 \implies Lagrange multiplier / Nitsche techniques
- Weak formulations require integrals on $\int_\Omega \cdots dx$, $\int_{\Gamma} \cdots dx$:
 Numerical integration on cut elements
- Small cuts introduce stability and conditioning problems
 (stabilizations?!)
Example problem 2: Stationary interface problem

Stationary geometrically unfitted domain ($\Gamma(t) = \Gamma$):

\[-\alpha \Delta u = f \quad \text{in } \Omega_1 \cup \Omega_2,\]

\[-\alpha \nabla u \cdot n = 0 \quad \text{on } \Gamma,\]

\[\llbracket u \rrbracket = 0 \quad \text{on } \Gamma,\]

\[u = 0 \quad \text{on } \partial \Omega.\]

Features:

- Solution has kinks across Γ:
 - “CutFEM”: $V_{\Gamma}^h = V_h|_{\Omega_1} \oplus V_h|_{\Omega_2}$
 - or “XFEM”: $V_{\Gamma}^h = V_h \oplus V_h^x$

- Imposition of interface conditions
 \[\implies \text{Lagrange multiplier / Nitsche techniques}\]

- Numerical integration on \textit{cut elements}

- Small cuts (stability / conditioning)
Example problem 3: Stationary surface PDE problem (Laplace Beltrami)

Stationary geometrically unfitted domain ($\Gamma(t) = \Gamma$):

$$-\Delta_{\Gamma} u = f \quad \text{on} \ \Gamma.$$

Features:

- Solution defined only on Γ
 - "Trace/CutFEM": $V^{\Gamma}_h = V_h|_{\Gamma}$
- Numerical integration on cut elements
- Approximation of normal/tangential direction
- Ambiguity in normal directions
 \Rightarrow (near) singular matrices (conditioning)
Example problem 4: Unsteady Poisson problem

Geometrically unfitted moving domain ($\Gamma(t) = \{\phi(x, t) = 0\}$):

\[
\begin{align*}
\partial_t u - \Delta u &= f \quad \text{in} \quad \Omega(t) = \{\phi(x, t) < 0\}, \\
- \alpha \nabla u \cdot n &= g_N \quad \text{on} \quad \Gamma_N(t) \subset \{\phi(x, t) = 0\}, \\
u &= g_D \quad \text{on} \quad \Gamma_D(t) \subset \{\phi(x, t) = 0\}, \\
u &= u_0 \quad \text{in} \quad \Omega(0) = \{\phi(x, 0) < 0\}.
\end{align*}
\]

Features:

- Time-dependent finite element spaces
- Space-Time:
 - Space-time finite element spaces
 - Numerical integration on space-time cut elements
- Characteristic FEM:
 - Characteristic back-tracking integrator
- + features of stationary unf. problems ...
Remarks on Examples 1-4

- Appear in two-phase flows
- Vector-valued versions relevant
 (Stokes interface, mean curvature calculation, ...)
- Background discretization can be conforming or nonconforming
Existing features

Related existing features in NGSolve:

- Background finite element spaces (scalar/vector, continuous/discontinuous)
- Convenient integral forms (VOL/BND/BBND)
- Handling of additional dofs: UNUSED_DOFs
- Easy set up of preconditioners
- Curved elements (isoparametric FE)
- Restriction of integration on some elements
- ...

\[
bfi = \text{SymbolicBFI}(u*v, \text{BND})
\]

\[
bfi.\text{SetDefinedOnElements}(...)\]
The new features of ngsxfem

New features in ngsxfem:

- **CutInfo** (level set cut topology):
 - Domain type per (VOL/BND) element:
 - **NEG**: completely in \(\{ \phi < 0 \} \)
 - **POS**: completely in \(\{ \phi > 0 \} \)
 - **IF**: intersected by \(\{ \phi = 0 \} \)
 - Cut ratio \(|T \cap \Omega_-|/|T| \) (detect small cuts)

- dof-handling for unfitted FE spaces, \(V_h = V_h|\Omega_- \)

- Extended FE spaces, \(V_h = V_h \oplus V_h^x \)

- Ghost penalty stabilization:
 - Marking of relevant facets (as BitArray)
 - Differential operator for \([\partial_n u]\) across facets

- **Numerical integration on cut elements**

Numerical integration on cut simplices

Tessellation

Approximation by piecewise linear level set function

\[\Rightarrow \text{piecewise linear interface } \Gamma^{\text{lin}} \]

- explicit domain approx.
- robust
- 2nd order

\[
T_1 = T_a \cup T_b \cup T_c \\
T_2 = T_d
\]
Numerical integration on cut simplices

<table>
<thead>
<tr>
<th>Tessellation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation by piecewise linear level set function</td>
</tr>
<tr>
<td>\Rightarrow piecewise linear interface Γ^{lin}</td>
</tr>
</tbody>
</table>

+ explicit domain approx. + robust − 2nd order

\[T_1 = T_a \cup T_b \cup T_c \]

\[
\int_{\Omega^{\text{lin}}} f dx \quad \text{or} \quad \int_{\Omega^{\text{lin}}} uv dx \quad \text{in ngsxfem:}
\]

Integrate(levelset_domain={"levelset":lsetp1,"domain_type":NEG},cf=f)

SymbolicBFI(levelset_domain={"levelset":lsetp1,"domain_type":NEG},u*v)
Parametric mapping for higher order geometrical accuracy

Basic concept of isoparametric unfitted FEM

- Start from (multi-)linear level set $I_h \phi(h)$
Parametric mapping for higher order geometrical accuracy

- Higher order, implicit
- Low order, explicit
- Higher order, explicit

Basic concept of isoparametric unfitted FEM

- Start from (multi-)linear level set $l_h\phi(h)$
- Construct a mapping of the underlying mesh s.t. $l_h\phi \approx \phi \circ \Theta_h$
Parametric mapping for higher order geometrical accuracy

Basic concept of isoparametric unfitted FEM

- Start from (multi-)linear level set $I_h \phi(h)$
- Construct a mapping of the underlying mesh s.t. $I_h \phi \approx \phi \circ \Theta_h$

```python
lsetmeshadap = LevelSetMeshAdaptation(mesh, order=order)
defformation = lsetmeshadap.CalcDeformation(levelset) \rightarrow \Theta_h
mesh.SetDeformation(deformation)
```

Examples
Numerical integration in \texttt{ngsxfem}

Numerical integration on \textit{cut elements} with $\phi^{\text{lin}} + \text{mesh transformation } \Theta_h$

- Integration on linear level set domains on simplices:
 - Geometrical decomposition into simplices
- Integration by transformation to reference domain (Ω^{lin})
Numerical integration in ngsxfem

Numerical integration on cut elements with $\phi^{lin} + \text{mesh transformation } \Theta_h$

- Integration on linear level set domains on simplices:
 Geometrical decomposition into simplices
- Integration by transformation to reference domain (Ω^{lin})
 Transformation factors (det($D\Theta_h$), ...) are automatically considered due to NGSolves mesh deformation handling (ALETransformation)

Changes in quadrature ($\Omega^{lin}_i \rightarrow \Omega_{i,h} = \Theta_h(\Omega^{lin}_i)$)

Quadrature after mapping, $\text{dist}(\partial\Omega_i, \partial(\Omega_{i,h})) \leq O(h^{k+1})$, $\omega_i > 0$:

$$\int_{\Omega_i} f \, dx \approx \int_{\Omega_{i,h}} f \, dx = \int_{\Theta_h(\Omega^{lin}_i)} f \, dx \approx \sum_{T \in T_h} \sum_{i} \omega_i |\det(D\Theta_h(x_i))| f(\Theta_h(x_i))$$
Numerical integration in ngsxfem

Numerical integration on cut elements with $\phi^{\text{lin}} + \text{mesh transformation } \Theta_h$

- Integration on linear level set domains on simplices:
 Geometrical decomposition into simplices
- Integration by transformation to reference domain (Ω^{lin})
 Transformation factors ($\det(D\Theta_h)$, ...) are automatically considered due to NGSolves mesh deformation handling (ALETransformation)

Changes in quadrature ($\Omega_{i}^{\text{lin}} \rightarrow \Omega_{i,h} = \Theta_h(\Omega_{i}^{\text{lin}})$)

Quadrature after mapping, $\text{dist}(\partial \Omega_i, \partial (\Omega_{i,h})) \leq O(h^{k+1})$, $\omega_i > 0$:

$$\int_{\Omega_i} f \, dx \approx \int_{\Omega_{i,h}} f \, dx = \int_{\Theta_h(\Omega_{i}^{\text{lin}})} f \, dx \approx \sum_{T \in T_h} \sum_{i} \omega_i |\det(D\Theta_h(x_i))| f(\Theta_h(x_i))$$

Consequences

- accuracy depends on Θ_h, but cut topology of Ω_{i}^{lin} unchanged
- Guaranteed stability of quadrature: $\int_{\Omega_{i,h}} uv \, dx \simeq I_h(\Omega_{i,h}; uv)$,
 (positiveness of quadrature weights $\omega_i |\det(D\Theta_h(x_i))|$)
Mapping of quadrature points

quadrilaterals

triangles

deformed mesh Θ_h (\mathcal{T}_h)
deformation order: 1

undeformed mesh \mathcal{T}_h

integration order: 2

$\Theta_h \in (V_h^1)^2$

Mapping of quadrature points

quadrilaterals triangles

defomed mesh $\Theta_h(T_h)$ undeformed mesh T_h
defomation order: 2 $\Theta_h \in (V^2_h)^2$
integration order: 4

Mapping of quadrature points

\begin{align*}
\text{quadrilaterals} & \quad \text{triangles} \\
\text{deformed mesh } \Theta_h(T_h) & \quad \text{undeformed mesh } T_h \\
deformation order: 3 & \quad \Theta_h \in (V_h^3)^2 \\
integration order: 6 &
\end{align*}
Mapping of quadrature points

(order = 4)

quadrilaterals triangles

deformed mesh $\Theta_h(Th)$
undeformed mesh Th
deformation order: 4 $\Theta_h \in (V_h^4)^2$
integration order: 8

Jupyter demos!
Demands from unfitted FEM

- Handling cut information (cut elements ...)
- Numerical integration in cut elements
- Stabilization on parts of the mesh

Tools in ngsxfem

- CutInfo
- new FESpaces (XFESpace, SpaceTimeFESpace, ...)
- Levelset-domain integration for SymbolicBFI/LFI and Integrate
- **explicit** high order geometry approximation with trafo Θ_h

Possibilities

- High order accurate unfitted FEM
- Simplex and quad meshes
- Fictitious domain / interface problems / surface PDEs
- Scalar and vector-valued problems
- Time dependent problem: ...
Outlook: Numerical integration in space-time in ngxsxfem

Space time integration

- Space-time FE for ϕ^{lin} (order k_t in time, order 1 in space)
- Iterated integrals with space-time prism
 (in regions with same cut topology)
- Combine with space-time finite element for $\Theta_h : \Omega \times [t^{n-1}, t^n] \rightarrow \Omega$

```python
tfe = ScalarTimeFE(k_t)
fe = H1(mesh, order=1)
st_fes = SpaceTimeFESpace(fes,tfe)
lsetp1 = GridFunction(st_fes)
...
SymbolicBFI(levelset_domain={"levelset":lsetp1,..},u*v,time_order=4)
```

Thank you for your attention!

Questions / Comments?

https://www.github.com/ngsxfem/ngsxfem
https://www.github.com/ngsxfem/ngsxfem-jupyter