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Abstract. Fluid-structure interactions (FSI) modeling is an important problem with applica-
tions in geophysics and engineering, including vibration and structural dynamic response, dam
failures during seismic excitation, reductions in noise emissions, noise prediction in aeroacous-
tic and so on. In this work we develop a new stabilized hybrid mixed finite element method
to solve acoustics FSI problems. Hybrid methods are characterized by the introduction of La-
grange multipliers to weakly impose continuity on the interelement interfaces. This approach
generates a global system involving only the degrees-of-freedom associated with the multipliers.
The quantities of interest are obtained from local problems that are solved at the element level.
In this context, to generate the hybrid method for the coupled fluid-structure problem we com-
bine the hybrid formulations for the Helmholtz problem with the time-harmonic elastic wave
problem. This methodology allows for natural coupling of fluid-structure interface conditions
via Lagrange multipliers. Some numerical experiments results illustrate the flexibility and the
robustness of the proposed finite element formulation.

Keywords: Fluid-Structure Interactions, Helmholtz Problem, Linear Elasticity Problem, Inter-
face Conditions, Mixed-Hybrid Methods
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1 INTRODUCTION

The dynamic interaction between a fluid and a structure is a significant concern in many
engineering problems. These problems include the modeling and simulation of aircraft, rock-
ets, turbines, marine structures (fixed, floating and submerged), storage tanks, dams, and sus-
pension bridges. The interaction may change the dynamic characteristics of the structure and
consequently its response to transient and/or periodic excitation (Ross et al. (2008, 2009)).

The acoustic fluid-structure problem is modeled by a coupled system of partial differen-
tial equations. Structural acoustics problems in general aim to solve for the acoustic pressure
field, resulting in a fluid and solid system due to mechanical solid excitation or external fluid
excitation. Fluid behavior is modeled by the Helmholtz equation, while structure behavior is
modeled by the time-harmonic elastic wave equation. Several finite element formulations based
on displacement, pressure, and potential have been applied to problems involving the interac-
tion between acoustic fluids and elastic structures (Gladwell, 1966; Gladwell and Mason, 1971;
Craggs, 1972; Zienkiewicz and Bettess, 1978; Nefske et al., 1982; Luke and Martin, 1995; Ross
et al., 2008, 2009; González et al., 2012).

In this work, we propose a new Stabilized dual Hybrid mixed finite element method for the
Helmholtz problem (SHHel). This method is characterized by weakly imposing the continuity
on each interelement edge via Lagrange multipliers and by adding least square residuals similar
to the method developed by Igreja et al. (2014) for the Darcy problem. Furthermore, the pro-
posed methodology is able to recover, in a convenient way, the stability of incompatible finite
element approximations, such as Lagrangian polynomial approximations of the same order for
all fields, which are unstable for the usual dual mixed formulation, as illustrated in Correa and
Loula (2008). To solve the time-harmonic elastic wave problem, we propose a new stabilized
primal hybrid method, denoted by SHEW (Stabilized primal Hybrid formulation for the time-
harmonic Elastic Wave problem) with the Lagrange multipliers associated to the displacement
field. From the proposed methods for the fluid domain and the structure domain we present
a new Stabilized Hybrid method for acoustic Fluid-Structure interaction (SHFS) based in pre-
viously work developed by Igreja (2015); Igreja et al. (2015). The method SHFS couple the
SHHel and SHEW methods and the interface fluid/structure conditions are naturally imposed
through the Lagrange multipliers.

The paper is organized as follows. We describe the model problem and introduce some
notations and definitions in Section 2. In Section 3 we present the proposed hybrid methods for
solving the Helmholtz and the Elastic Wave problems, independently, and the coupled acoustic
fluid-structure interaction problem. We make some remarks on the solving methodology in
Section 4. In Section 5 some numerical experiments are presented, showing the convergence
rates. The paper ends with some concluding remarks in Section 6.

2 PRELIMINARIES

In this section we present the model problem and some definitions and notations commonly
adopted to construct variational formulations in broken function spaces associated with hybrid
methods.
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2.1 FLUID-STRUCTURE MODEL PROBLEM

The domain Ω ⊂ Rd (d = 2 or d = 3) for the coupled fluid-structure model problem
(see Fig. 1) is composed by a subdomain Ωf , with outward unit normal nf , which we identify
as the fluid domain, and a subdomain Ωs, with outward unit normal ns, that represents the
structure domain. The fluid behavior in Ωf is modeled by the Helmholtz equation, while the
solid behavior in Ωs is described by the time-harmonic elastic wave system. These subdomains
are separated by a smooth interface Γfs = ∂Ωf ∩∂Ωs. The Lipschitz boundaries of the fluid and
solid domains are denoted by Γf = ∂Ωf \Γfs and Γs = ∂Ωs\Γfs. We denote by uf = u|Ωf

and
pf = p|Ωf

the velocity and pressure fields, respectively, in the fluid domain and by us = u|Ωs

the displacement vector field of the structure.

We proceed to the presentation of the equations describing the phenomena in each medium.

n

Ω

Γ

Ω
s

fs

ns

Figure 1: A sketch of the domain for the fluid-structure problem showing the interface of discontinuity.

Helmholtz System

For the fluid domain Ωf we consider that the propagation of acoustic waves occurs in an
ideal compressible fluid. A linear model for this phenomenon is given by the wave equation

− div (∇ϕ) +
1

c2

∂2ϕ

∂t2
= F, (1)

where ϕ(x, t) represents small oscillations of the pressure, c is the velocity of the sound in the
acoustic medium and F (x, t) = f(x)eiωf t is a source term. Considering harmonic solutions in
time with circular frequency ωf , the pressure field is written as ϕ(x, t) = pf (x)eiωf t and the
pressure amplitude pf satisfies the Helmholtz equation

− div
(
∇pf

)
− k2

fpf = f, (2)

where the parameter kf = ωf/c, known as the wavenumber, characterizes the oscillatory be-
havior of the solution ϕ. This problem can be formulated in two fields, velocity and pressure,
by introducing the vector field uf = −∇pf and rewriting the Helmholtz equation (2) in a mixed
form, as follows.

Given the wavenumber kf and the function f , find the velocity field uf : Ωf → Rd and the
pressure field pf : Ωf → R such that

uf +∇pf = 0 in Ωf , (3)
div uf − k2

fpf = f in Ωf . (4)
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This system can be supplemented by a Dirichlet boundary condition

pf = g on Γf (5)

or a Robin boundary condition

−uf · nf + ikfpf = r on Γf , (6)

where i =
√
−1.

Time-Harmonic Elastic Wave System

The solid domain Ωs is occupied by an isotropic and linearly elastic body characterized by
the real valued constant mass density ρs > 0 and the Lamé coefficients λ, µ ∈ R satisfying
µ > 0 and 3λ + 2µ > 0. In this context, we define the time-harmonic elastic wave problem
supplemented by Robin boundary conditions as

Given the mass density ρs, the circular frequency ωs, the tensor A and the source terms f
and g, find the displacement field us : Ωs → Rd satisfying

− divσ(us)− ρsω2
sus = f in Ωs (7)

σ(us)ns + iAus = g on Γs (8)

σ(us) is the symmetric Cauchy stress tensor. For a linear, homogeneous and isotropic material
σ(us) is given by

σ(us) = Dε(us) = 2µε(us) + λ(tr ε(us))I (9)

where D = 2µI + λ I ⊗ I is the isotropic elasticity tensor, ε(us) = 1/2(∇us + ∇uT
s ) is the

linear strain tensor, I is the second-order identity tensor, I is the fourth-order identity tensor
on symmetric second-order tensors and tr ε(us) = div us. For linear plane strain the Lamé
coefficients are given by

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
, (10)

where E denotes the elasticity modulus and ν is the Poisson’s ratio. The tensor A is defined as

A =

kp 0

0 ks

 , (11)

where kp is the longitudinal (pressure) wavenumber and ks is the transverse (shear) wavenum-
ber, are shown below

kp = ωs

√
ρs

2µ+ λ
, (12)

ks = ωs

√
ρs
µ
. (13)

Interface Fluid-Structure Conditions

Now we present the interface conditions between the acoustic domain and the structural
domain, Γfs = ∂Ωf ∩ ∂Ωs. For the acoustic domain, the local balance of linear momentum
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equation should be satisfied as follows (Yoon et al., 2007; Vicente et al., 2015)

uf · nf + ρfω
2
sus · ns = 0 on Γfs. (14)

This equation represents the kinematic compatibility of the normal displacements at the inter-
face of fluid and structural domains. We also have to make sure that the traction on the solid
part equals the fluid pressure on the interface:

σ(us)ns + pfnf = 0 on Γfs. (15)

Equation (15) indicates the action of pressure forces exerted by the fluid on the structure and
represents the equilibrium condition at the interface between the domains.

2.2 NOTATIONS AND DEFINITIONS
To introduce the stabilized hybrid formulations we first recall some notations and defini-

tions. Let Hm(Ω) the usual Sobolev space equipped with the usual norm ‖·‖m,Ω = ‖·‖m and
seminorm |·|m,Ω = |·|m, with m ≥ 0. For m = 0, we induction L2(Ω) = H0(Ω) as the space of
square integrable functions and H1

0 (Ω) the subspace of functions in H1(Ω) with zero trace on
∂Ω.

For a given function space V (Ω), let [V (Ω)]d and [V (Ω)]d×d be the spaces of all vector and
tensor fields whose components belong to V (Ω), respectively. Without further specification,
these spaces are furnished with the usual product norms (which, for simplicity, are denoted
similarly as the norm in V (Ω)). For vectors v,w ∈ Rd and matrices σ, τ ∈ Rd×d we use the
standard notation.

Restricting to the two-dimensional case (d = 2), we define a regular finite element partition
Th of the domain Ω:

Th = {K} := the union of all elements K.

In cases where Ω is divided into subdomains Ωi with smooth boundary ∂Ωi and Γi = ∂Ω∩∂Ωi,
we have for each subdomain the following regular partition

T i
h = {K ∈ Th ∩ Ωi},

and the following set of edges

E ih = {e; e is an edge of K, for at least one K ∈ T i
h},

E∂,ih = {e ∈ E ih; e ⊂ Γi}

E0,i
h = {e ∈ E ih; e is an interior edge of Ωi},

E ijh = E0,i
h ∩ E0,j

h .

This last case denotes the edges that compose the interface between the subdomains, where Ωi

and Ωj are two adjacent subdomains.

We assume that the domain Ω is polygonal. Thus, there exists c > 0 such that h ≤ che,
where he is the diameter of the edge e ∈ ∂K and h, the mesh parameter, is the maximum
element diameter. For each element K we associate a unit normal vector nK . Let Vl

h and Qm
h

denote broken function spaces on Th given by

Vl
h(Ω) = {v ∈ [L2(Ω)]2; vh|K ∈ [Sl(K)]2, ∀K ∈ Th}, (16)
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Qm
h (Ω) = {q ∈ L2(Ω); qh|K ∈ Sm(K), ∀K ∈ Th}, (17)

where Sl(K) and Sm(K) denote the space of polynomial functions of degree at most l and m,
respectively, on each variable. To introduce the hybrid methods we define the following space
associated with the Lagrange multiplier

Mn
h(Eh) = {µ ∈ [C0(Eh)]2 : µ|e = [pn(e)]2, ∀e ∈ E0

h}. (18)

Similarly, pn(e) is the space of polynomial functions of degree at most n on an edge e.

3 HYBRID METHODS
In this section we introduce, separately for each subdomain, the hybrid formulation for the

Helmholtz and Elastic Wave problems. The first is the method, called SHHel, that is formulated
in the fluid domain Ωf and is characterized by weakly imposing the continuity via Lagrange
multipliers related to the velocity field and stabilizing with the addition of least square residuals.
For the solid domain Ωs, we develop the stabilized hybrid SHEW method, which associates a
Lagrange multiplier to the displacement field. These methods are coupled using the Lagrange
multipliers to naturally impose the interface fluid/structure conditions, giving rise to the SHFS
(Stabilized Hybrid formulation for acoustic Fluid-Structure interaction) method.

3.1 Stabilized Hybrid Formulation for the Helmholtz Problem
To introduce the hybrid formulation for the Helmholtz Problem in the fluid domain Ωf we

first consider Eqs. (3)-(4) multiplied by their respective weighting functions and integrated by
parts on each element K ∈ T f

h , getting the following local weak formulation for [uf
h, p

f
h] ∈

Vl
h(Ωf )×Qm

h (Ωf )∫
K

uf
h · vh dx−

∫
K

pfh div vh dx +

∫
∂K

pfh (vh · nK) ds = 0, ∀vh ∈ Vl
h(Ωf ),

−
∫
K

div uf
h qh dx +

∫
K

k2
f p

f
h qh dx = −

∫
K

f qh dx, ∀qh ∈ Qm
h (Ωf ).

To derivate a hybrid method we introduce a Lagrange multiplier λf defined as the trace
of uf , λf = uf |e, on each edge e ∈ Efh . We also need to add a symmetrization term and a
stabilization term for the multiplier on ∂K ∈ T f

h , obtaining the following problem:

Given the wavenumber kf , find [uf
h, p

f
h] ∈ Vl

h(Ωf )×Qm
h (Ωf ) and the Lagrange multiplier

λf
h ∈Mn

h(Efh ) such that, for all [vh, qh] ∈ Vl
h(Ωf )×Qm

h (Ωf ) and µh ∈Mn
h(Efh )∑

K∈T f
h

∫
K

uf
h · vh dx−

∑
K∈T f

h

∫
K

pfh div vh dx +
∑
K∈T f

h

∫
∂K

pfh (vh · nK) ds

+
∑
K∈T f

h

∫
∂K

qh (uf
h − λf

h) · nK ds+ βf
∑
K∈T f

h

∫
∂K

(uf
h − λf

h) · vh ds

−
∑
K∈T f

h

∫
K

div uf
h qh dx +

∑
K∈T f

h

∫
K

k2
f p

f
h qh dx = −

∑
K∈T f

h

∫
K

f qh dx, (19)

−
∑
K∈T f

h

∫
∂K

pfh (µh · nK) ds− βf
∑
K∈T f

h

∫
∂K

(uf
h − λf

h) · µh ds = 0, (20)
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where the stabilization parameter βf is given by

βf =
kf
h
. (21)

Note that the first term in Eq. (20) imposes the continuity of the pressure between the elements
and the second term stabilizes the velocity and the Lagrange multiplier.

Also, we add to the system (19)-(20) the least squares stabilization terms related to Eqs. (3)
and (4) and to the rotational of Eq. (3) in each element K ∈ T f

h in order to stabilize the local
variables uf

h and pfh (Harari and Hughes, 1992; Monk and Wang, 1999; Loula, 2011). Thus, we
derive the stabilized hybrid (SHHel) method supplemented by Robin boundary conditions (6),
which can be presented as

Find the pair [uf
h, p

f
h] ∈ Vl

h(Ωf ) × Qm
h (Ωf ) and the Lagrange multiplier λf

h ∈ Mn
h(Efh )

such that, for all [vh, qh] ∈ Vl
h(Ωf )×Qm

h (Ωf ) and µh ∈Mn
h(Efh )

ASHHel([u
f
h, p

f
h,λ

f
h]; [vh, qh,µh]) = FSHHel([vh, qh,µh]), (22)

with

ASHHel([u
f
h, p

f
h,λ

f
h]; [vh, qh,µh]) =

∑
K∈T f

h

[ ∫
K

uf
h · vh dx−

∫
K

pfh div vh dx

+

∫
∂K

pfh (vh − µh) · nK ds+

∫
∂K

qh (uf
h − λf

h) · nK ds

+ βf

∫
∂K

(uf
h − λf

h) · (vh − µh) ds−
∫
K

div uf
h qh dx

+

∫
K

k2
f p

f
h qh dx +

δ1

k2
f

∫
K

(div uf
h − k2

f p
f
h)(div vh − k2

f qh) dx

+ δ2

∫
K

(uf
h +∇pfh) · (vh +∇qh) dx +

δ3

k2
f

∫
K

rot uf
h rot vh dx

− i

kf

∫
∂K∩Γf

(λf
h · nK) (µh · nK) ds

]
(23)

and

FSHHel([vh, qh,µh]) =
∑
K∈T f

h

[
δ1

k2
f

∫
K

f (div vh − k2
f qh) dx−

∫
K

f qh dx

+
i

kf

∫
∂K∩Γf

r (µh · nK) ds

]
, (24)

where rot = ∇× denotes the rotational operator and δn, with n ∈ {1, 2, 3}, are dimensionless
stabilization parameters.

3.2 Stabilized Hybrid Formulation for the Elastic Wave Problem

To derive the hybrid formulation for the elastic wave problem in the structural domain Ωs,
we consider Eq. (7) multiplied by a weighting function and integrated by parts on each element
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K ∈ T s
h , getting the following local weak formulation for us

h ∈ Vl
h(Ωs), for all vh ∈ Vl

h(Ωs)∫
K

Dε(us
h) · ε(vh) dx−

∫
∂K

Dε(us
h)nK · vh ds−

∫
K

ρsω
2
su

s
h · vh dx =

∫
K

f · vh dx.

The introduction of the Lagrange multiplier λs defined as the trace of us, λs = us|e, on
each edge e ∈ Esh, is made similarly to the previous problem. After the addition of a sym-
metrization term and a stabilization term for the multiplier on ∂K ∈ T s

h , we get the following
problem:

Find us
h ∈ Vl

h(Ωs) and the Lagrange multiplier λs
h ∈ Mn

h(Esh) such that, for all vh ∈
Vl

h(Ωs) and for all µh ∈Mn
h(Esh)∑

K∈T s
h

∫
K

Dε(us
h) · ε(vh) dx−

∑
K∈T s

h

∫
∂K

Dε(us
h)nK · vh ds

−
∑
K∈T s

h

∫
K

ρsω
2
su

s
h · vh dx−

∑
K∈T s

h

∫
∂K

Dε(vh)nK · (us
h − λs

h) ds

+βs
∑
K∈T s

h

∫
∂K

(us
h − λs

h) · vh ds =
∑
K∈T s

h

∫
K

f · vh dx,

∑
K∈T s

h

∫
∂K

Dε(us
h)nK · µh ds− βs

∑
K∈T s

h

∫
∂K

(us
h − λs

h) · µh ds = 0, (25)

where βs is the stabilization parameter, given by

βs =
β0

h
, β0 > 0. (26)

Note that the first term of Eq. (25) imposes the continuity of the normal component of the stress
tensor between the elements and the second term stabilizes the Lagrange multiplier. Thus, the
SHEW method supplemented by Robin boundary conditions Eq. (8) can be presented as

Find us
h ∈ Vl

h(Ωs) and the Lagrange multiplier λs
h ∈ Mn

h(Esh) such that, for all vh ∈
Vl

h(Ωs) and for all µh ∈Mn
h(Esh)

ASHEW ([us
h,λ

s
h]; [vh,µh]) = FSHEW ([vh,µh]), (27)

with

ASHEW ([us
h,λ

s
h]; [vh,µh]) =

∑
K∈T s

h

[ ∫
K

Dε(us
h) · ε(vh) dx−

∫
K

ρsω
2
su

s
h · vh dx

−
∫
∂K

Dε(us
h)nK · (vh − µh) ds−

∫
∂K

Dε(vh)nK · (us
h − λs

h) ds

+ βs

∫
∂K

(us
h − λs

h) · (vh − µh) ds+

∫
∂K∩Γs

iAλs
h · µh ds

]
(28)

and

FSHEW ([vh,µh]) =
∑
K∈T s

h

[ ∫
K

f · vh dx +

∫
∂K∩Γs

g · µh ds

]
. (29)

CILAMCE 2015
Proceedings of the XXXVI Iberian Latin-American Congress on Computational Methods in Engineering
Ney Augusto Dumont (Editor), ABMEC, Rio de Janeiro, RJ, Brazil, November 22-25, 2015



Alan A. S. Amad, Iury Igreja, Thiago O. Quinelato, Abimael F. D. Loula

3.3 Stabilized Hybrid Formulation for Acoustic Fluid-Structure Interac-
tion

In order to generate a coupled hybrid method for the fluid structure interaction we use the
stabilized hybrid formulations Eq. (22) for the fluid domain and Eq. (27) for the structure do-
main. Moreover, the interface fluid/structure conditions (Eqs. (14)-(15)) are naturally imposed
by the Lagrange multiplier. Thus, on the edges e ∈ Efsh that compose the interface Γfs, we have
for the fluid domain∑

K∈T f
h

[ ∫
Γsf

pfh (vh − µh) · nf ds+

∫
Γsf

qh (uf
h − λf

h) · nf ds

+ βf

∫
Γsf

(uf
h − λf

h) · (vh − µh) ds

]
, (30)

and for solid domain∑
K∈T s

h

[
−
∫

Γsf

Dε(us
h)ns · (vh − µh) ds−

∫
Γsf

Dε(vh)ns · (us
h − λs

h) ds

+ βs

∫
Γsf

(us
h − λs

h) · (vh − µh) ds

]
. (31)

Choosing the Lagrange multiplier λf
h, associated to the Helmholtz velocity and stabilized

by the parameter βf , on the interface Γfs, the terms in (31) must adapt to satisfy the inter-
face conditions from Eqs. (14)-(15). Thus considering only the normal component of the term
multiplied by βs, including the chosen multiplier on the interface and using identity

λs
h · ns =

1

ρfω2
s

λf
h · ns on Γfs, (32)

obtained from the equation (14) in Eq. (31), we derive an interface condition able to naturally
couple the two media∑

K∈T s
h

[
−
∫

Γsf

Dε(us
h)ns · (vh − µh) ds

+ βf

∫
Γsf

(
us
h −

1

ρfω2
s

λf
h

)
· ns (vh − µh) · ns ds

]
. (33)

Using the interface condition Eq. (33) to connect the SHHel method with SHEW method
we introduce the Stabilized Hybrid method for Acoustic Fluid-Structure interaction (SHFS), as
follows:

Find [ui
h, p

f
h] ∈ Vl

h(Ωi) × Qm
h (Ωf ), with i = f, s, and the Lagrange multipliers λi

h ∈
Mn

h(E ih) such that, for all [vh, qh] ∈ Vl
h(Ω)×Qm

h (Ωf ) and µh ∈Mn
h(Eh)

ASHFS([uf
h,u

s
h, p

f
h,λ

f
h,λ

s
h]; [vh, qh,µh]) = FSHFS([vh, qh,µh]), (34)
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with

ASHFS([uf
h,u

s
h, p

f
h,λ

f
h,λ

s
h]; [vh, qh,µh]) = ASHHel([u

f
h, p

f
h,λ

f
h]; [vf

h, qh,µ
f
h])

+ ASHEW ([us
h,λ

s
h]; [vs

h,µ
s
h])

+
∑
K∈T s

h

[
−
∫

Γsf

Dε(us
h)ns · (vh − µh) ds

+ βf

∫
Γsf

(
us
h −

1

ρfω2
s

λf
h

)
· ns (vh − µh) · ns ds

]
(35)

and

FSHFS([vh, qh,µh]) = FSHHel([vh, qh,µh]) + FSHEW ([vh,µh]). (36)

4 SOLVING METHODOLOGY

We start with the solving methodology for the SHHel method, given by Eq. (22). In order
to solve the proposed formulation, we eliminate the degrees-of-freedom for the variables uf

h

and pfh at the element level in favor of the degrees-of-freedom for the multiplier λf
h, leading to

a global system in the multipliers only. Approximated solutions for the variables uf
h and pfh can

then be sought through a set of local problems, each one defined on a element K ∈ T f
h . The

problem can be written as

Find [uf
h, p

f
h] ∈ Vl

h(Ωf ) × Qm
h (Ωf ) and the Lagrange multiplier λf

h ∈ Mn
h(Efh ) such that,

for all [vh, qh] ∈ Vl
h(Ωf )×Qm

h (Ωf ) and µh ∈Mn
h(Efh )

aK([uf
h, p

f
h], [vh, qh]) + bK(λf

h, [vh, qh]) = fK([vh, qh]), ∀K ∈ T f
h , (37)

∑
K∈Th

bTK([uf
h, p

f
h],µ) +

∑
K∈Th

cK(λf
h,µ) = gK(µh), (38)

with
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aK([uf
h, p

f
h], [vh, qh]) =

∫
K

uf
h · vh dx−

∫
K

pfh div vh dx +

∫
K

k2
f p

f
h qh dx

+

∫
∂K

pfh (vh · nK) ds+

∫
∂K

qh (uf
h · nK) ds

−
∫
K

div uf
h qh dx + βf

∫
∂K

uf
h · vh ds

+
δ1

k2
f

∫
K

(div uf
h − k2

f p
f
h)(div vh − k2

f qh) dx

+ δ2

∫
K

(uf
h +∇pfh) · (vh +∇qh) dx

+
δ3

k2
f

∫
K

rot uf
h rot vh dx,

bK(λf
h, [vh, qh]) = −

∫
∂K

qh (λf
h · nK) ds− βf

∫
∂K

λf
h · vh ds,

cK(λf
h,µh) = βf

∫
∂K

λf
h · µh ds− i

kf

∫
∂K∩Γf

(λf
h · nK) (µh · nK) ds,

fK([vh, qh]) =
δ1

k2
f

∫
K

f (div vh − k2
f qh) dx−

∫
K

f qh dx,

gK(µh) =
i

kf

∫
∂K∩Γf

r (µh · nK) ds.

The solving strategy for both the SHEW and SHFS methods is analogous.

Rewriting Eqs. (37) and (38) in a matrix form, we obtain

AKU + BKΛ = FK , ∀K ∈ Th (39)∑
K∈Th

BT
KU +

∑
K∈Th

CKΛ = 0, (40)

where

for SHHel: U =


ufx

ufy

pf

 Λ =

λfx
λfy

 ; (41)

for SHEW: U =

usx
usy

 Λ =

λsx
λsy

 . (42)
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For the hybrid coupled SHFS method we have the variables Eq. (41) in the fluid domain Ωf and
Eq. (42) in the structure domain Ωs. On the interface Γfs we adopt Λ = (λfx, λ

f
y)T .

Given that AK is positive definite, we solve Eq. (39) to obtain

U = A−1
K (FK −BKΛ), ∀K ∈ Th. (43)

Replacing Eq. (43) in Eq. (40), we obtain the global system in Λ only, as follows∑
K∈Th

(CK −BT
KA−1

K BK)Λ = −
∑
K∈Th

BT
KA−1

K FK . (44)

After solving the global Eq. (44), the vector U can be obtained from Eq. (43).

5 NUMERICAL RESULTS

In this section we present numerical results for two of the proposed formulations: SHHel
and SHEW.

5.1 Numerical Results in Fluid Domain - SHHel method

In the numerical experiments we consider a domain Ω = [0, 1] × [0, 1], kf = 12, θ = π/6
and f(x, y) = 0 to develop the following exact solution

pf (x, y) = cos[kf (x cos θ + y sin θ)] + i sin[kf (x cos θ + y sin θ)]. (45)

A comparative study of the convergence rates obtained with SHHel, the Local Projection (LP ) 1

and the Interpolant (I) for variables uf
h, pfh and λf

h is presented in Figs. 2–4. The approximate
solutions have been obtained using uniform meshes of (10·j)×(10·j), with j = 2, 3, 4, 5, 6, 7, 8,
elements. The plots present approximations in L2-norm. Furthermore, in all simulations we
fixed

δ1 = 0, 5; δ2 = −0, 5; δ3 = 0, 5.

For Fig. 2 we present a h-convergence using the SHHel approximations on quadrilateral ele-
ments Q1Q1 − p1. In Fig. 3 we present a h-convergence using the SHHel approximations on
quadrilaterals elements Q2Q2 − p2. In Fig. 4 show results of convergence study using a fixed
20 × 20 uniform mesh and varying the degree of the polynomial approximations by setting
l = m = n = 1, 2, 3, 4, 5 sequentially.

5.2 Numerical Results in Solid Domain - SHEW method

For the Elastic Wave problem, numerical experiments are developed in a domain Ω =
[0, 1] × [0, 1], where the values for the density constant, Poisson’s ratio, Young’s modulus and
frequency, are given by: ρs = 1, E = 1, ν = 0.3 and ωs = 20. Moreover we adopt kp = 17.23,
ks = 32.25 and θ = π/6 to derive the following analytical solution

us(x, y) = (cos θ, sin θ)T exp[ikp(x cos θ + y sin θ)]

+ (− sin θ, cos θ)T exp[iks(x cos θ + y sin θ)]. (46)

1The Local Projection is obtained using the exact solution (45) for the multiplier in the system (43).
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Figure 2: Helmholtz: h-Convergence for the uf
h, pfh and λf

h approximations by the SHHel hybrid method
(h), Local Projection (LP ) and Interpolant (I). Error in the L2-norm for quadrilaterals elements Q1Q1−p1.
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Figure 3: Helmholtz: h-Convergence for the uf
h, pfh and λf

h approximations by the SHHel hybrid method
(h), Local Projection (LP ) and Interpolant (I). Error in the L2-norm for quadrilaterals elements Q2Q2−p2.
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Figure 4: Helmholtz: p-Convergence for the uf
h, pfh and λf

h approximations by the SHHel hybrid method
(h), Local Projection (LP ) and Interpolant (I). Error in the L2-norm for fixed 20× 20 elements mesh.

In tests we compare the convergence rates obtained with SHEW, the Local Projection (LP )2

and the Interpolant (I) for variables us
h, ∇us

h and λs
h, Figs. 5–7, employing uniform meshes of

(10·j)×(10·j), with j = 2, 3, 4, 5, 6, 7, 8, elements. For stability parameter Eq. (26) we choose
β0 = 5 for Q1−p1 approximations and β0 = 12 for Q2−p2 approximations. In Fig. 5 we present
a h-convergence using the SHEW approximations on quadrilateral elements Q1 − p1. In Fig. 6
we present a h-convergence using the SHEW approximations on quadrilateral elements Q2−p2.
In Fig. 7 much more accurate solutions are obtained by increasing the degree of the polynomial
approximations, where p-convergence results are presented using a fixed 20× 20 uniform mesh
and varying the degree of the polynomial approximations by setting l = m = n = 1, 2, 3, 4, 5
sequentially, in this case we adopt the respective values of β0 = 5, 12, 20, 45, 60.

6 CONCLUSIONS

We developed a Stabilized dual Hybrid mixed finite element method for the Helmholtz
problem (SHHel), a Stabilized primal Hybrid method for the time-harmonic Elastic Wave prob-
lem (SHEW) and a Stabilized Hybrid method for acoustic Fluid-Structure interaction (SHFS).
The continuity of this methods are imposed via Lagrange multipliers identified as the trace
of the velocity/displacement field only on the edges of the elements leading to a set of local
problems defined at the element level and a global problem in the multiplier only. Then, the
global problem, involving only the degrees-of-freedom of the multiplier is solved leading to
the approximate solution of the multiplier, which is plugged into the local problems to recover
the discontinuous approximation of the variables. The interface of the acoustic fluid-structure
problem is naturally imposed by the Lagrange multipliers.

2The Local Projection is obtained using the exact solution (46) for the multipliers in the system (43).
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Figure 5: Elastic Wave: h-Convergence for the us
h, ∇us

h and λs
h approximations by the SHEW hybrid

method (h), Local Projection (LP ) and Interpolant (I). Error in the L2-norm (left and right) and H1-
seminorm for quadrilaterals elements Q1 − p1.
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Figure 6: Elastic Wave: h-Convergence for the us
h, ∇us

h and λs
h approximations by the SHEW hybrid

method (h), Local Projection (LP ) and Interpolant (I). Error in the L2-norm (left and right) and H1-
seminorm for quadrilaterals elements Q2 − p2.
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Figure 7: Elastic Wave: p-Convergence for the us
h, ∇us

h and λs
h approximations by the SHEW hybrid

method (h), Local Projection (LP ) and Interpolant (I). Error in the L2-norm(left and right) and H1-
seminorm for fixed 20× 20 elements mesh.
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